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Abstract
The synthesis between continued fractions and numerical analysis is explored in the paper “Chaos and
Continued fractions” (Corless, 1992). The underlying idea is that the numerical simulation of the Gauss
map generates continued fractions. In dynamical systems context, this article also investigates the
conditions under which orbits of the Gauss map are periodic as well as the consequences of working
with floating point numbers. This essay project analyzes this research and then explore the dynamics of
the Gauss map in half-precision floating point.
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1. Introduction and preliminaries
Dynamical system is the study of time evolution of points in a specified geometrical space. It appears
in many areas of study which require mathematical modelling. For instance the study of long-term
behavior of certain species population in biology. The evolution function takes several points depending
on the system but our main focus will be on the study of one dimensional dynamical system which is
the Gauss map. The connection between this map and continued fractions gives an interesting result in
dynamical interpretation. The aim of this essay is to understand the dynamics of the Gauss map. The
Chapter 2 will evaluate the study of orbits in general, whilst in the Chapter 3, we specialize to a system
within the framework of fixed precision floating point arithmetic.

1.1 Continued fractions

The term continued fractions was first used by John Wallis in 1653 in his book Arithmetica (Widž,
2009). In general, continued fractions are used to give the best possible rational approximations to
irrational numbers. A so-called “simple continued fraction” of a number γ has an expression of the form

a0 + 1

a1 + 1

a2 + 1
a3 + ...

where the first term a0 is an integer that could be zero and the other ai’s are positive integers. They
are called elements or partial quotients of the continued fraction. By convention, γ can also be written
as γ = [a0; a1, a2, ...].

One way to represent a rational number p/q where 0 6= q and p ∈ Z in the form of a finite simple
continued fraction is by using Euclid’s algorithm for computing the greatest common divisor. The
quotients that arise in the Euclidean algorithm are precisely the partial quotients. The last nonzero
remainder, which is in fact the greatest common divisor, appears as the numerator of last fractional part
2.1.1 of the continued fraction.

As an example, Euclid’s algorithm applied to p
q = 97

38 for computing the gcd is:

97 = 38× 2 + 21
38 = 21× 1 + 17
21 = 17× 1 + 4
17 = 4× 4 + 1
4 = 1× 4 + 0.

This yields the following expansion of pq in the form of a continued fraction:

p

q
= 2 + 1

1 + 1

1 + 1

4 + 1
4

= [2; 1, 1, 4, 4].

1
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Furthermore, since Euclid’s algorithm terminates in O(log(min(p, q))) operation, we deduce that any
rational number can be represented as a finite simple continued fraction. Conversely, any finite simple
continued fraction represents a rational number.

Since the expansion of rational numbers into continued fractions is straightforward, we turn our attention
to the continued fraction expansion of irrational numbers. Most authorities agree that the modern theory
of continued fraction began with the writings of Rafael Bombelli1 in his treatise on algebra (Widž,
2009). He introduced square roots and essentially indicates that√

a2 + b = a+ b

2a+ b

2a+ ...

The convergence of this expansion was only proved later.

Later mathematicians working with continued fractions include Pietro Antonio Cataldi2 and Lord
Brouncker3 (Widž, 2009). The typical method to obtain the continued fraction representation of a
number γ especially for irrational numbers can be interpreted by the following algorithm:

First notice that γ can be written as the sum of its integer part, denoted n0, and its fractional part
denoted γ0 (if it is not zero). Then we invert γ0 and proceed identically, and n1, γ1 play the role of
n0 and γ0 respectively. Again we iterate it a while, a time which we will define later on. But if γ
is a rational number, this time will be finite. For example of an irrational γ, the continued fraction
representation of

√
6 is:

√
6 = 2 + 1

2 + 1

4 + 1
2 + ...

Proof. Since 22 < 6 < 32, then
√

6 = 2 + α with α ∈ (0, 1). The first step is to invert α =
√

6 − 2.
We have:

1
α

=
√

6 + 2
6− 4 =

√
6 + 2
2 = 4 +

√
6− 2

2 = 2 + α

2 where α

2 ∈ (0, 1).

Thus
√

6 = 2 + 1
1
α

= 2 + 1
2 + α

2
, and we invert again α/2. So we have:

1
α
2

= 2√
6− 2

= 2(
√

6 + 2)
6− 4 = 2 +

√
6 = 4 + α.

Finally,
√

6 = 2 + 1
2 + 1

4+α
at which the next step comes back to the first one.

Therefore
√

6 = [2; 2, 4, 2, 4, 2, 4, ...].
1Rafael Bombelli (1530-1572) is a native of Bologna. He wrote the book entitled “Algebra” which gives a thorough

account of the algebra and his contribution to complex numbers. He planned to publish five volumes of this book but
unfortunately he was never able to publish the last two since he died after the publication of the first three.

2Pietro Antonio Cataldi (1548-1626) is a native Bologna. In 1613, he published “Trattato del modo brevissimo di trovar
la radice quadra delli numeri” where he showed that the square root of a number is found through the use of infinite series
and unlimited continued fractions.

3Lord Brouncker (1620-1684), the first President of the Royal Society. He transformed the interesting infinite product
4
π
discovered by John Wallis into a continued fraction expansion.
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1.2 Half precision floating points

Floating point numbers are numeric values with zero or non-zero fractional parts. They are an important
data type in computation which is now being used extensively in high-speed applications. All floating
point values are represented with a normalized scientific notation defined in the following example:

67.21654 = 0.6721654× 102.

The first part is called the Mantissa; or significand, and the second part is the exponent in the decimal
format. In a computer, these numbers have a specific number of bits allocated for storage for both the
mantissa and the exponent. The limit of the magnitude or range of the floating point numbers stands
for the finite number of bits in the exponent. In case of the finite number of the mantissa bits, it bounds
the number of significant digits or the precision of the floating point numbers. Thus the main difference
between arbitrary real numbers and floating point numbers is that real numbers are infinite in terms of
range and precision whereas floating point numbers are finite in both cases (Konsor, August 15, 2012).

The standard used in most of computer hardware to store and process the floating point numbers is
developed by the Institute of of Electrical and Electronic Engineers (IEEE 754) in 1985 and enhanced in
2008. In this case, instead of using the decimal format, all floating point values use a normalized binary
format. The representation of a binary floating point number is as follows:

(sign)×1.mantissa× 2±exponent,

where the sign is one bit (by convention, 0 for positive and 1 for negative), the mantissa is a binary
fraction with a hidden non-zero leading bit, and the exponent is a binary integer. The most commonly
used level of precision is the single precision with width 32 bits and the double precision with width 64
bits. As part of this essay we will not be focusing on these two but rather on the half precision floating
point numbers because this is increasingly being used for speed (Konsor, August 15, 2012).

Half precision floats are based on 16-bit floating-point numbers, known as the binary 16 or half-floats
in IEEE 754-2008 standard, the half size of the 32-bit single precision floats. They have lower precision
and smaller range and must be converted to/from 32-bit floats before they are operated on. The main
reason for using them is that half-floats use less memory. As with all floating-point numbers, they have
relatively high precision for floating-point values near zero, but have low precision for numbers far from
zero (Konsor, August 15, 2012). The representation of the binary 16 has the following format:

• sign : 1 bit

• exponent : 5 bits

• mantissa : 11 bits (10 explicitly stored).

The commonly used binary format is arranged in this form:

sign-exponent-mantissa

For example 0 00001 00010101111.

However in terms of exponent encoding, the half precision floats use an offset binary known as the
exponent bias in the IEEE 754 standard. Thus in order to get the right value of the exponent, we have
to substract the offset 15 by the stored exponent.

Normalized numbers are numbers written in scientific notation in a way that there is only one nonzero
integer part. In our case, this integer part is the number one. Any nonzero number with magnitude
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smaller than the smallest normal number is called a subnormal number. Infinities (Inf) and Not a
Number (NaN) are special values used as replacement values when there is an overflow or an invalid
operation. For precise definition of each different numbers in binary16, the chart below shows how to
convert the binary16 into decimal. e stands for the exponent, s the signbit and m the mantissabit.

Normal numbers Subnormal numbers 0 and -0 ± Infinity NaN
Exponent 00001,...,11110 00000 00000 11111 11111
Mantissa zero or nonzero nonzero zero zero nonzero
Equation (−1)s × 2e-15 × 1.m2 (−1)s × 2−14 × 0.m2 (−1)s × 2−14 × 0.m2

As an example, let us convert the two binary16 numbers 0 00000 1111111111 and 0 00001 0000000000
into decimal format. According the formula, we have

0 00000 1111111111 = (−1)0 × 2−14 × 0.1111111112

0 00001 0000000000 = (−1)0 × 21−15 × 1.000000000002

Thus we have to convert this decimal binary into decimal.

0.1111111112 =
10∑
i=1

(1
2

)i
=

1− (1
2)11

1− (1
2)1 − 1 = 1023

1024
1.000000000002 = 1 + 0 = 1

Therefore

0 00000 1111111111 = 1
16384 ×

1023
1024 ≈ 6.0976× 10−5

0 00001 0000000000 = 1
16384 ≈ 6.1035× 10−5

The first example illustrates the largest subnormal number and the second one represents the smallest
positive normal number.



2. The Gauss map as a chaotic discrete
dynamical system
In this Chapter, we define and study several properties of the Gauss map and then relate it to continued
fractions.

2.1 The Gauss map and continued fractions

2.1.1 Definition. Let x be a non-negative real number. The fractional part of x, denoted as x mod 1,
is given by:

x mod 1 = x− [x]
where [x] is the integer part of x.

2.1.2 Definition. The Gauss map G : [0, 1]→ [0, 1] is the following map:

G(x) =
{

0 if x = 0
1
x mod 1 if 0 < x ≤ 1.

Notice that [1
x

]
= n ⇐⇒ n ≤ 1

x
< n+ 1 ⇐⇒ 1

n+ 1 < x ≤ 1
n
.

Then the Gauss map can be expressed as:

G(x) =
{

0 if x = 0
1
x − n if 1

n+1 < x ≤ 1
n

for n ∈ N∗

where its graph is described below.

Figure 2.1: Gauss map

The restriction of G : ( 1
n+1 ,

1
n ]→ [0, 1) is monotone, surjective and invertible as we see on the picture.

Notice that at values x = 1
n , for all n nonzero positive integer, there are an infinite number of disconti-

nuities. Because of these breaks, this function is not continuous. However the important property that

5
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we are interested in is not caused by the discontinuity. If we view G as a map of the circle onto the
circle, so that we put together the ends of the interval, all these jump discontinuities will be removed.
The picture below shows the visualization of the Gauss map lying in the torus.

Figure 2.2: Graph of the Gauss map lying in the torus.

2.1.3 Definition. A discrete dynamical system is a map f : X → X where X is a system with x ∈ X
as an initial condition. This system changes as time goes on and may appear discretely or continuously.

From the algorithm stated in Chapter 1.1 to compute the continued fraction, we can define the following
iteration: γk+1 = 1

γk
mod 1 = G(γk)

nk+1 =
[

1
γk

] for k ∈ N

with γ0 as an initial condition. It follows that the Gauss map is a discrete dynamical system.

2.1.4 Definition. We call the sequence (Gk(x0))k≥0 the orbit of the initial point x0 under the Gauss
map and denoted by orb(x0).

Studying the orbits in a dynamical system reveals important features about the time evolution of the
system. In the next Section, we will take a closer look at orbits under the Gauss map.

2.1.5 Theorem. Let x ∈ [0, 1] and n1, n2, ...nk, ... the integers part that arise from the computation
of orb(x) under G. Then x = [n1, ..., nk, ...].

Proof. Let us remark first that if

n1 =
[1
x

]
, then G(x) = 1

x
− n1. Hence x = 1

n1 +G(x) .

Repeating the procedure with G(x), we obtain

n2 =
[ 1
G(x)

]
=⇒ G(x) = 1

n2 +G2(x)

where G2(x) = G(G(x)).
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Now let us prove the theorem by induction. Suppose that

nk =
[ 1
Gk−1(x)

]
and x = 1

n1 + 1

n2 + ...
1

nk +Gk(x)

We note that this is already true for n = 1. Suppose that it is true for any k and consider k + 1.

We have nk+1 =
[

1
Gk(x)

]
and by definition of G,

Gk+1(x) = 1
Gk(x) −

[ 1
Gk(x)

]
= 1
Gk(x) − nk+1 ⇐⇒ Gk(x) = 1

nk+1 +Gk+1(x) .

2.1.6 Remark. The theorem holds in case x ∈ Q. There exists an i such that Gi(x) = 0, and hence
for all j ≥ i, Gj(x) = 0. Thus the entries of the continued fraction expansion of x are given by the
finite integer parts of the iteration of orb(x) under G.

We deduce that continued fractions can be generated by the Gauss map. Thus, from now, there will be
many implications for the dynamics of the Gauss map while operating the continued fractions.

2.1.7 Theorem. If x = [n1, n2, ...], then G(m)(x) = [nm, nm+1, ...] for all m ≥ 0.

Proof. We proceed by induction. We define G(0)(x) = x. Hence for m = 0, the statement is verified.
Suppose that it is true for all m = k, and let us demonstrate that G(k+1)(x) = [nk+1, nk+2, ...].

By the inductive hypothesis, we have

G(k)(x) = [nk, nk+1, ...]

= 1

nk + 1
nk+1 + ...

.

By inverting,

1
G(k)(x)

= nk + 1

nk+1 + 1
nk+2 + ...

,

and by taking the fractional part, we obtain{ 1
G(k)(x)

}
= G(k+1)(x) = 1

nk+1 + 1
nk+2 + ...

.

This theorem shows that the Gauss map moves the partial quotients of the continued fraction expansion
by an one-sided shift.
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2.2 Periodic and fixed points

Now we will focus more on the Gauss map as part of a discrete dynamical system, but first we will intro-
duce some fundamental notions in the setting of one-dimensional dynamics. Orbits play an important
role in dynamics since they predict the behavior of the system. The following definitions are some of its
properties.

2.2.1 Definition. The α-limit set of orb(x0) is the set of all initial points having orbits approaching
orb(x0) as time goes to infinity. The ω-limit set of orb(x0) is the set of its accumulation points.

2.2.2 Definition. Any point x which satisfies G(x) = x is called a fixed point. The point x0 is a
periodic point m of G if Gm(x0) = (x0) but Gi(x0) 6= 0 for 0 < i < m. The least number m which
verifies this property is the period of orb(x0).

2.2.3 Definition. Let x0 be a periodic point such that |G(n)(x0)| < 1 for n ≥ 1. Then x0 is called a
periodic point attractor of period n. If this is not the case, then x0 is called a repelling periodic point
of period n.

2.2.4 Example. From the figure 2.1, if we draw the line y = x as seen in 2.3, the first two fixed points
are given by the positive solution in [0, 1] of the following equations:

x1 = 1
x1
− 1 and x2 = 1

x2
− 2

Figure 2.3: Fixed points of the Gauss map

Thus we have

x1 = 1
x1
− 1 =⇒ x2

1 + x1 − 1 = 0

=⇒ x1 =
√

5− 1
2 ,
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which is called the Golden mean. Since x1 = 1
x1
− 1, then x1 = 1

1+x1
. It follows that its continued

fraction representation is

x1 = 1

1 + 1

1 + 1
1 + ...

denoted by [1, 1, 1, ...].

For the second fixed point, we have

x2 = 1
x2
− 2 =⇒ x2

2 + 2x2 − 1 = 0

=⇒ x2 =
√

2− 1,

which is called the Silver mean and proceeding the same way, its continued fraction representation is

x2 = 1

2 + 1

2 + 1
2 + ...

denoted by [2, 2, 2, ...].

Thus 1 and 2 are periodic points of the Gauss map.

Further, there are some classical theorems to study the periodic points and the fixed points. They are
stated as follows.

2.2.5 Definition. A root of a quadratic equation with integer coefficients is called a reduced quadratic
irrational.

2.2.6 Theorem. (Galois) Let γ be a reduced quadratic irrational such that γ > 1 and its conjugate lies
in the interval (−1, 0). Then its continued fraction is purely periodic. The reciprocal is also true.

Proof. The proof can be seen in (Olds, 1963).

2.2.7 Corollary. (Corless et al., 1990) The reciprocals of the reduced quadratic irrational numbers give
the periodic points of the Gauss map. Furthermore, they are dense in [0, 1).

Proof. Let γ = n0 + [n1, n2, ...] be a reduced quadratic irrational. From Theorem 2.2.6, γ is purely
periodic. Now recall that the Gauss map is given by the shift property, so as long as the continued
fraction of γ is periodic then G(γ) will also be periodic. Thus the periodic points are this reciprocal.
As far as the density is concerned, the continued fraction expansion of a periodic point may initiate in
the same way as any given continued fraction so it will ultimately be close to any given number.

2.2.8 Example. Consider τ =
√

5+1
2 , the Golden ratio, which satisfies the quadratic equation τ2−τ−1 =

0. Its continued fraction expansion is given by τ = 1 + [1, 1, 1, ...]. The other root of this quadratic
is −1

τ = 1−
√

5
2 which lies in the interval (−1, 0). According to the corollary 2.2.7, the reciprocal of the

reduced quadratic irrational 1
τ is the periodic point and we have seen in the example 2.2.4 that it is the

Golden mean with period 1.

Sometimes, this periodicity of the Gauss map may occur infinitely meaning that each period has many
points. For instance, [n1, n2, ..., nk, n1, n2, ...] has period k for any integers n1, n2, ..., nk.
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2.2.9 Definition. A map f is said to be sensitive to initial conditions if for any pair of points which in
the beginning are arbitrary close, have orbits that move apart at an exponential rate.

2.2.10 Definition. (Devaney, 1989) A map f is said to be chaotic on any given interval if:

1. f is sensitive to initial conditions.

2. f is topologically transitive.

3. its periodic points are dense in the interval.

Topological transitivity is dependent on the density of the orbits. For more details, one can consult
(Sergiy Kolyada). In our case, we restrict our study to the sensitivity to initial conditions and the
periodicity of orbits. These are the main characteristics of a chaotic system, including that chaotic
maps possess a degree of unpredictability. Arbitrarily small changes to the initial points for orbits may
lead significant errors throughout its future behavior.The following theorem emphasizes the sensitivity
of the Gauss map.

2.2.11 Theorem. (Lagrange) Let γ = [a1, a2, ..., ai, n1, n2, ..., nk, n1, n2, ..., nk, ...] be an ultimately
periodic continued fraction with transients a1, ..., ai at the beginning of a periodic continued fraction.
Then γ is a quadratic irrational and the reciprocal is also true.

Proof. See Olds (Olds, 1963).

2.2.12 Corollary. (Corless et al., 1990) The Gauss map is sensitive to initial conditions.

Proof. Recall that an attractor is a point which attracts orbits. We have seen that the fixed point 0
attracts all rational initial points while a periodic orbit attracts quadratic irrational numbers. These
two sets are dense in the interval [0, 1). Now let us check the rate of separation of orbits. Consider all
points in a small interval I of width ε. According to the pigeonhole principle 1, a rational number of the
form p/n = [a1, a2, ..., ai] must be contained in this interval such that n is the smallest integer larger
than 1/ε. Since O(log(n)) is the number of iterations of the Gauss map needed to reach zero, it will
be O(log(ε)) for this initial point. Since the quadratic irrationals are dense, the interval I contains a
purely periodic point. Thus for a large enough N , [a1, a2, ..., ai, N, 1, 1, 1, ...] is the continued fraction
expansion of a point in I. Thus, the orbit under G starting from this point ends up on the fixed point
at 1/τ . Then, the separation is in an exponential rate.

2.2.13 Remark. The continued fraction expansions for non-quadratic irrationals also exist. They are
seen to have initial points whose orbits are not periodic under the Gauss map.

As a result, the Gauss map follows the requirements being a chaotic discrete dynamical system.

2.3 Lyapunov exponents

Numerically, a Lyapunov exponent is a quantitative measurement of a chaotic dynamical system. The
Gauss map has already been seen to be sensitive to initial conditions, meaning that the orbits move
away from each other over time. However, we do not know exactly the rate value at which these orbits
become separated, but we have assumed that the trajectories are separating exponentially.

1In general, the pigeonhole principle states that taking n items and putting them in a m containers where n > m, there
will at least one container which contains more than one item.
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2.3.1 Definition. For two orbits under the Gauss map in an ε neighborhood, we have

|Gn(x+ ε)−Gn(x)| ≈ εenλ

where λ is called the Lyapunov exponent.

2.3.2 Remark. Linear divergence appears if λ as defined above is equal to zero. If it is positive, then
the system is sensitive to initial conditions. Otherwise if it is negative, the trajectories of orbits will
decrease in time .

2.3.3 Definition. The Lyapunov exponent of the Gauss map at the initial point γ0 is defined by

λ(γ0) = lim
n→∞

1
n

ln
(

n∏
i=1
|G′(γi)|

)

whenever this limit exists. It is clear that if the initial point γ0 is a rational, the limit does not exist.

This limit gives the average value of this function logarithm. From the Figure 2.1, the slope looks like
it is getting steeper and steeper and it is not clear whether this is finite or not. However, the region in
which it is happening becomes smaller, so there is a possibility that this will actually be finite. It turns
out that the Lyapunov exponent exists and is given by:

λ(γ0) = π2

6 ln 2 .

The explicit calculation of this will be shown in the next Section using the ergodic theory.

2.3.4 Definition. For a fixed point αN = [N,N,N, ...] he Lyapunov exponents is as follows:

λ(αN ) = lim
n→∞

1
n

ln
(

n∏
i=1
|G′(γi)|

)

= lim
n→∞

1
n

n∑
i=0

ln |G′(αN )|

= lim
n→∞

1
n

n∑
i=0

ln | − 1
α2
N

|

= −2 lim
n→∞

1
n

n∑
i=0

ln(αN )

= 2 ln( 1
αN

)

2.3.5 Example. We have already seen that the Golden mean 1
τ is periodic with period 1 so its Lyapunov

exponent is

λ( 1
τ

) = 2 ln τ ≈ 0.96..

This example points out the fact that the Gauss map is chaotic since we have seen one point which
has positive Lyapunov exponent. The following result shows that this value is the smallest Lyapunov
exponent under G.

2.3.6 Theorem. There are no orbits under the Gauss map which have Lyapunov exponents smaller
than λ( 1

τ ) = 2 ln τ .
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Proof. Let γ = [n1, n2, n3, ...] be any initial point in (0, 1) such that

λ(γ) = lim
N→∞

1
N

ln
(
N∏
i=1
|G′(γi)|

)

exists. The aim is to show that the product
∏N
i=0(1/γ2

i ) must be at least τ2N . Consider the sequence
γk and γk+1 of the orbit γ related by

γk = 1
nk+1 + γk+1

.

Note that if k = N then it increases the product by one term. Now we have two cases.

If γk ≤ 1
τ , then τ

2 ≤ 1
γ2
k
which means that the input of 1

τ to product is at least τ2.

If γk > 1
τ , then

γkγk+1 = γk+1
nk+1 + γk+1

= 1− nk+1γk

≤ 1− γk < 1− 1
τ

= 1
τ2

Thus the contribution of 1
γ2
k
γ2
k+1

to the product is at least τ4. So, the theorem is proved.

2.4 Ergodicity behavior

Ergodic theory is the study of the long term average behavior of systems envolving in time. Indeed, we
would like to study the orbits of the Gauss map and how they change as time goes on. To illustrate this,
these transformations preserve the structure of measure space in the study of this theory (Billingsley,
1965). The measure used has a relation to probability but we are not focusing too much on this.

2.4.1 Lemma. The Gauss map preserves the Borel measure2, so-called µ in [0, 1] given by

µ(A) :=
∫
A

1
1 + x

dx

for any Borel measurable set A ⊆ [0, 1].

Proof. We have to show that µ
(
G−1([0, k])

)
= µ ([0, k]) for k > 0. We have already seen that

2Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable unions and
intersections. Any measure defined on the Borel sets is called a Borel measure.



Section 2.4. Ergodicity behavior Page 13

G−1([0, k]) =
⋃∞
n=1

[ 1
k + n

,
1
k

]
, thus we have:

µ
(
G−1([0, k])

)
= 1

ln 2

∞∑
n=1

∫ 1/n

1/k+n

1
1 + x

dx

= 1
ln 2

∞∑
n=1

(
ln (1 + 1

n
)− ln (1 + 1

k + n
)
)

= 1
ln 2

∞∑
n=1

(
ln (1 + k

n
)− ln (1 + k

k + n
)
)

= 1
ln 2

∞∑
n=1

∫ k/n

k/n+1

1
1 + x

dx

= µ ([0, 1]) .

Thus according this Lemma 2.4.1, the Gauss map is ergodic with respect to the Gauss measure. Since
the function logarithm is integrable in [0, 1], we can calculate the Lyapunov exponent defined in 2.3 as
the following:

λ(γ) = −2 lim
n→n

1
n

(
n∑
i=0

ln(γi)
)

= − 2
ln 2

∫ 1

0

ln(x)
1 + x

dx

= 2
ln 2

∫ 1

0

ln(x+ 1)
x

dx

= 2
ln 2

∞∑
k=0

(−1)k
∫ 1

0

xk

k + 1dx

= 2
ln 2

∞∑
k=0

(−1)k

(k + 1)2

= 2
ln 2

(
π2

12

)

= π2

6 ln 2 = 2.3731..

Thus this value can hold for any initial point taken.

In general, in a phase space, for any ergodic transformation and invariant measure, the time average is
nothing else than the average over the whole space. Thus taking an arbitrary point and then calculating
the limit of the average as time goes to infinity of the Gauss map along the orbit means that any orbit
will cover the entire space.



3. Simulation of the Gauss map in half-precision
The value of any rational initial points of the form 1/n where n ∈ N∗ under the Gauss map is always
zero. One may wonder what would happen if we used the floating point values of these numbers instead.
Particularly, we examine the consequences of using a fixed precision whilst implementing the arithmetic
operation of division in order to see what patterns will emerge. In short, we would like to see if the
simulation of the Gauss map in half-precision will remain a chaotic discrete dynamical system.

3.1 Floating point arithmetic operations

Floating-point arithmetic is a nearly-universally used system for computer arithmetic. An important
fact is that, it does not have the usual property of arithmetic operations. In addition, there is a serious
difference of the finite set of floats depending on which precision we are operating, either single (32
bits), double (64 bits) or half precision. However, we can have only at most 2L numbers using L bits
meaning that there are 216 = 65, 536 different half-precision floating point numbers. It may be fewer
since some of them are reserved for special numbers such as Inf or NaN resulting from 0/0. Also, these
numbers need to be both positive and negative, so that there are at most 32768 positive numbers.
Since the significand of the binary16 is made of 10 bits, one may think that 210 = 1024 is enough
for practical purposes. However, the rapidity with which one may lose all accuracy in a computation
with half-precision numbers may be a surprise. Without loss of generality, for this project, we are just
focusing on positive normal numbers starting from the smallest one which is 2−14.

First, let us define a new Gauss map noted Ĝ before any implementation.

3.1.1 Definition. Let Ĝ : [0, 1]→ [0, 1] be a map defined as follows:

Ĝ(x) =
{

0 if x = 0
1
x mod 1 if 0 < x ≤ 1.

where the operations of division and mod 1 deal with the half-precision floating points domain with
round-off error. Since the significand is made of 10 bits, we are going to map 14 × 210 = 14, 336
different normal half-precision numbers in the interval (0, 1) to get another of those numbers.

In any numerical simulation, accuracy is limited by errors due to round-off, discretisation and uncertainty
of input data (Crofts, 2007). This following definition highlights how to estimate such error in terms of
arithmetic operations.

3.1.2 Definition. A machine epsilon µ is the smallest number such that 1 + µ > 1. This is used to
measure the effects of rounding errors made in arithmetic operations and it depends on the programming
language.

If we take any rational number γ in the interval (0, µ) then eventually G(γ) = 0. This effectively limits
the power of the singularity of the Gauss map (Corless et al., 1990).

3.1.3 Remark. Binary16 numbers has µ = 2−10 ≈ 0.00097656 in most programming language such as
python, C or C++.

The main difficulty is now to figure out if this new Gauss map has the same properties as the previous
one. More precisely whether it is still chaotic. However, this project, which explores a simple and

14
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well-understood dynamical system as implemented in half-precision, shows some surprises. Not all of
the half-precision floating point numbers are representable in the system. The computer is not able to
represent all real numbers since there are a finite number of them. Let us illustrate Ĝ with the following
example.

3.1.4 Example. Consider the number 1/27. This number falls between two consecutive numbers
607/16384 and 1215/32768 which is not true in case of the usual arithmetic operations. The binary
representation of these two numbers are 1.0010111110×2−5 and 1.0010111111×2−5 respectively which
is in fact differ from the last bit. Since the half-precision system can only represent 10 bits explicitly for
the significand, thus this leaves the number 1/27 out of the list of numbers that can be stored in the
computer. This means that it cannot be represented exactly in binary16.

This Example 3.1.4 shows that the computer has chosen 607/16384 to be represented instead of 1/27.
This number has been “correctly rounded” to the nearest half-precision number. The unit round-off
error made in these half-precision numbers is 1/2048. Thus 1/27 is close to the lower number.

The application of this rounding in half-precision numbers induces a significant error immediately for the
Gauss map. The number 1/27 gives zero under G while the number 607/16384 gives 602/607 which
has the value next to 1. however, implementing in half-precision, the number 607/16384 gives 63/64
under Ĝ which is still near 1 but not as close. Consequently, this single rounding in order to fit 1/27
into the system develops a significant change of the action of the Gauss map, which is almost 1. This
difference may still be large if we are working in high precision either single or double. The shadowing
result which we give later helps to ameliorate this effect, but does not cure it.

3.2 Detection of periodic orbits cycle

Before any implementation, let us find first what are the 14, 336 half-floating point numbers in the
interval (0, 1). To do so, the algorithm to find them is as the following:

1. Put in an array of the possibility combination of 0 and 1 for 10 bits. This is exactly all the possible
significands.

2. Create an empty array of range 14, 336.

3. Set a counter.

4. Making for loops to calculate the half-precision floating point numbers.

5. Put these numbers in the empty array .

The code is simulated as follows:
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Algorithm 1 Number of floats16
significands ← array of possible combination of 0 and 1 for 10 bits.
binary16 ← array of range(14, 336)
a← 0
for i in range (-14,0) do

for j in range (1024) do
binary16[a] ← np.float16(2i(1+sum(int(significands[j][k])/2k+1 for k in range(10))))

a← a+ 1
print (binary16)

Now we have an array of all the binary16 numbers. We are going to map all of these under Ĝ. Let us
check how many of them are directly map to zero. The algorithm to find that is stated as follows:

1. Creating an array of range 14, 336.

2. Making a foor loop of range 14, 336.

3. Mapping each one of binary16 numbers to Ĝ, and compare these values with the binary16 numbers
themselves. Then take the indexes and put them inside the array defined above.

The code is implemented as follows:

Algorithm 2 half-precision under Ĝ
array ← array of range 14,336
for i in range of (14,336) do

y ← Ĝ(binary16[i])
p =np.argwhere(binary16=y)
array[i]=p[0][0]

print(np.argwhere(array!=0)

For finding the number of cycle of the periodicity, we are going to state again an algorithm which is the
following:

1. Create an empty list.

2. Set a counter.

3. Initialize the first iteration of the orbit under the Gauss map.

4. Make a for loop to find the sequence of the orbit in a certain range and then put it in the empty
list.

5. Make another for loop to search which value is repeating and count the number of iteration until
this repetition is found.

6. Then the number of cycle is given by the subtraction of the number of the counter to the index
of the number which is repeating minus one since a list is counted from zero.

Thus this code can be implemented as follows:
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Algorithm 3 Number of cycles
procedure Period(n)

a = []
b← 0
m← Ĝ(n)
for i in range of 2000 do

a.append(m)
m← Ĝ(m)

for i in range of the length of a do
b← +1

if one of the indexed value already exists then
return b− 1− index(a[i])

The algorithm to find the transient is almost the same as this previous one. The differences are that
there is no need to count the number of iteration and it has to return only the index since this is already
the number that we are searching for.

Results

Recall that half-precision has higher precision for floating point values close to zero. In that way, we
would like to expect having less values which do not go to zero. However, after the simulation, there
are 5156 float16 numbers that are immediately mapped to 0. The smallest number that does not get
mapped straight to 0 by Ĝ is 1041/1048576, which has [0; 1007, 3, 1, 1, 1, 1, 18, 1, 2] as continued
fraction expansion. This was found to the 4114-th number of the binary16 array numbers. The largest
one is the number 2047/2048 which was found as the last value of the binary16 numbers.

One may wonder what will happen to all the fixed points of the Gauss map. Recall that they are given
by the positive solution of the equation x = 1

x − n for n ∈ N∗. Thus, the computer has to fit these
numbers in half-precision floating points and find their own representation. After the implementation,
there are only 3 fixed points under Ĝ. The Golden mean is rounded as 633/1024. This fixed point
implemented under Ĝ is periodic with [0; 1, 1, 1, 1, 1, 1, 1, 1] as continued fraction expansion. However,
the rounding of the Silver mean in half-precision is not one of the fixed points any more. The next one
is the number 155/512 which is next to the fixed point with continued fraction [0; 3, 3, 3, ..] under the
exact Gauss map. The last one is obviously the number 0.

The number of cycle of the periodic orbits gives some remarkable results but seemingly, the shortest
transient is 0 and the shortest cycle is 1. There are two 1-cycle which are only the three fixed points
described above, two 2-cycle, two 3-cycle, one 6-cycle and one 18-cycle. This last one is the largest
cycle for this simulation and there are no other cycles apart from these.

3.3 Orbits implemented in binary16

Since all orbits which are not mapped to zero are periodic and there are only a finite number of such
orbits, Ĝ is not ultimately chaotic anymore. Two arbitrary initial points as close as possible do not have
orbits moving apart, in fact they are still close or even the same. So the sensitivity of Ĝ is not valid.
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As a consequence, in this new half-precision floating Gauss map, the Lyapunov exponent is not used.
In addition, the round-off errors introduced into the calculation of the orbits is far away from the Gauss
map G. However in such a case, one can always wonder about this limitation of floating point systems
whether or not the computed solution is close to a true solution of the system of interest.

There is a technique called Backward error analysis which allows to evaluate the orbits of Ĝ. The aim
of this method is to show that despite the fact that the numerical simulation of orbits under Ĝ with
round-off errors is not exactly correct, it is almost the true solution with slightly perturbed input data.
Hence, there is a correlation between orbits under Ĝ and the orbits under G (Corless et al., 1990). This
shows that there is a shadowing bound at the numerical values of the orbits under Ĝ. Formally, there
exists ε > 0 such that for two orbit sequences (γi)i∈N and (αi)i∈N relatively under Ĝ and G itself,

|γi − αi| < ε.

The following theorem shows this shadowing effect of the numerical simulation of these orbits.

3.3.1 Theorem. (Corless et al., 1990) Let x0, x1, x2, x3, ... be the orbit sequence under Ĝ and y =
[a1, a2, a3, ...] where ai’s are the integers arising during the continuous iteration. Then the orbit of y
under G approaches orb(x0). More precisely, y is close to x0.

Proof. The proof will proceed as follows: first, we are proceeding to give an approximation of an orbit
y by a specific rational numbers. After, we are going to approximate xk by the same rational number
using a common floating-point arithmetic model. Precisely, it will be based on the fact that errors will
decrease while running the Gauss map backwards.

Let yk = [ak+1, ak+2, ...]. Truncating this continued fraction expansion of yk at the integer ak+n
produces the rational numbers pn

qn
= [ak+1, ak+2, ak+3, ..., ak+n] which satisfy

|yk −
pn
qn
| < 1

q2
n

and qn ≥ Fn,

where Fn is the n-th Fibonnacci number (Olds, 1963), so that given ε > 0, we can find a number n
such that |yk − pn

qn
| < ε.

Now, let a,b and c be three floating-point numbers satisfying a ÷ b = c. This division can happen for
any numerical implementation with a precised machine epsilon µ. Thus there exists |δ| < µ such that

c(1 + δ) = a

b
.

Coming back to our case, if the orbit x0, x1, x2, x3, ... has been generated in such a floating-point
operating model and G(xk+n) = xk+n+1, then for each n there is a number δk+n with |δk+n| < µ such
that

(1 + δk+n)xk+n = 1
ak+n+1 + xk+n+1

,

where ak+n+1 and xk+n+1 are machine representable integer and floating-points respectively. Then this
addition appears in the denominator is exact. Now, consider εk+n+1 = xk+n+1

ak+n+1
. Then we have

(1 + εk+n+1)(1 + δk+n)xk+n = 1
ak+n+1

.
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Now, let

zk+m = [ak+m+1, ak+m+2, ak+m+3, ..., ak+n+1] and εk+m = zk+m − xk+m for m = 0, 1, 2, ..., n

The aim is to estimate the error εk = zk − xk since we have already seen the error for zk − yk.

So now we have

(1 + δk+m)xk+m = 1
ak+m+1 + xk+m+1

= 1
ak+m+1 + zk+m+1 − εk+m+1

= zk+m.
1

1− εk+m+1.zk+m

Thus

zk+m = (1− εk+m+1.zk+m)(1 + δk+m)xk+m

= xk+m − εk+m+1zk+mxk+m + δk+nxk+m − δk+nεk+m+1zk+mxk+m.

Now we get a recurrence relation defined by

εk+m = zk+m − xk+m

= δk+mxk+m − (1 + δk+m)εk+m+1zk+mxk+m.

This recurrence relation provides an upper bound estimated to be

εk+m ≤
{

4u+ 1−4µ
2(n+1−m)/2 n-m is odd

4u+ 1−3µ
2(n−m)/2 n-m is even

and since n→∞, zk → yk, and so |xk − yk| ≤ 4u.

Therefore there exists a nearby initial point y0 whose orbit under G follows as near as possible to the
computed orbit x0, x1, x2, x3, ... under Ĝ.



4. Conclusion
The Gauss map shows a particular study of the dynamical system. The significance of the periodic orbits
play an important role to determine the dynamical behaviour of the system either being chaotic in one
part or not in other part. However, despite the fact that working in half precision floating points may
cause some arithmetic errors, even more higher for both single and double precision, we have tried to
establish that orbits under this simulation are not far away from the exact one. Some further works may
determine the number of basins of attraction of the set of these periodicity cycles seen while simulating
the Gauss map in binary16. We can also do a similar study using the single and double precision and
compare how the dynamics of the Gauss map change.
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